
Math 564: Real analysis and measure theory
Lecture 8

Terminology· Let IX
,
B
, M) be a measure space andP be a property of points in X (e.g. being transcendental

for X := (R) . Then we say that

↑ holds a . e.almost everywhere) in X

or a
.
e. almost every XeX satisfies 4 & if(xEX : x satisfies Ph is conull

.

or P holds a
.
s. (almost surely

Measure exhaustion
.

In a measure space ,
call a collection & of sets almost disjoint if the pairwise inter-

sections of sets in I are will.

Ctbl pigeonhole principle (orfinite measures) . Let (
,
B
, M) be a finite measure space . Then any

almost disjoint collection & of N-measurable positive measure sets is etbl.

Proof
.
We first prove this assuming M(X) & .

Then for each wEINY
,

the at

2 : = (c 2 : M(c)yt)
is finite (infact

, enMMX) elements) and 2 = Ven
,
so 2 is itbl.

nESN+

For the general -finite case
,
let X = L/Xu where each XuEB is of finite measure

.

nEIN

And define

Du : = (c) : m(c1x1) > 0) ·
Then by the finite case

,
each Dn is itbl and I

=UDn , so & is cthl

Transfinite measure exhaustion . LetI , B
, M) be a definite measure space and let (A)We

be an increasing requence of momeasurable sets
,

whereco,
in the first nuctel ordinal.

Then the sequence almost stabilizes at some ctblordical & , i. e. Vd = U , An-uAy



Propf
.
We disjointify : Al := AnYgAr ,

so 3 Adlasco
,

is an almost disjoint collection,
I

hone all but itbly many
,

of An are will by shel pigeonhole , i. e. F ctbl
ordinal8 such Pet An is wall for all 238

,

hence As-Ag because

As Ay = VAs is wall being a cabl union of wall mets
.

Rapid

Remark
. This allows to run transfinite algorithms which at each step handle a positive
measure set

.

Then we know the algorithm will stop at a cl stage , having
handled a cocull set.

We now discuss an important application. In a measure space with atoms
,
we can't

achieve every value of measure between O and M(X) , but this is the only obstruction.

Siepinski's theorem .
In an utomles measure space IX , U ,

M1 , every value Ocrsg(X)
is achieved

,

i

. e. There is BEC with M/B) = 0.

Proof. First let's prove a more humble statement :

Claim 1. Every positive measure set Y contains positive measure sets of arbitrarily small measure.

Pf of Claim . Y is not an atom 10 there must be XoEY with(x) < M14 .

We build

a sequence (sIsezN of positive measure sete such that Xs = XsoLlXse

Xa as follows : if Xs is defined
,
it's not an atom

,

so Here is Xso = Xs in B

with O < M/Xsol < MIXs) .
Let Xsi : = X> \Xso .

Xo X
For each set

,
one of Xso and XsI has measure &M/Xs) ,

Xoo Xo Xio XI
which gives an infinite branch (sulne in the tree of positive measure

::: uts with MIXsi)= MIX0) · Claim 1)

Iteratively using Claim 1
,
we now explicitly build a set BCB with M(B) = r.



Proof via transficile exhaustion. Netire a sequence (Aalaco =B of pairwise disjoint sets such that

MAs) for each o
, by inclection as follows : ifAsiase is already defined, let

As be a positive measure subst of XIAs ofeccuer-u(WAs) if r-MWAn O;
as

otherwise put As := 0. Now the proof of ctbl pigeonhole for measureslusing the condition

↑ IW An) ar EBSc , instead of the finiteness ofm) gives that all but othly many of the As
B

are will
,
i
.
e
.

5Bs
,
with An wall for all LeB .

Thus
, M/WA)-=

Proof via -greedy algorithm. We inductively build a requence (Bulne = B of pairwise disjoint
cets such that M/HBi) ->r as follows : suppose (Bilian is defined and take Buths to

be
any set with

↑ ( Bu) = sup (BcB : BEX1LBi and M(B) =v- M(WBi)]

Now Heat (Buhne is defined
,

monotone convergence implies [MIBu) =MIB) Er , in partica
lar
,limh(Br = O . We now check thathere set

Ba : = VB -

hecN

has measure = r
.

Indeed
,
otherwise

, M(BM) ar, so by Claim 1
,
there is B' = XLB & in 3

such that O < M(B1 = r-M(BA). But taking a large enough neIN so What M(Bu) < EMIB),
we get a contradition with the choice of Br .

Approximating measurable sets

99% lemma. We begin with a basic observation.
Observation I percentage of carrots in coup) . Let (X , B, M) be a measure space

and let A
,
B be m-measure

roble cets with OCMIB)c4 ·

Then for
any /percentage) pe10, 1 and any finite or ctbl)

partition B = W Bu
,
where NENUS43 , we have

naN u(A(B) = p MCABa) = p for some n

M(B)
Proof

. MIABI =B MLAB , where ,
so
it's a courex crbinch. .


